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1. INTRODUCTION

In his classic book on interpolation and approximation, Walsh [1] has
shown that approximation in the sense of least squares by polynomials is
intimately connected with Taylor series and he suggested that
"approximation in the sense of least squares by more general rational
functions may also be connected with interpolation in points related to the
poles of the rational functions." A number of his theorems [1, Chapter IX]
justify this assertion. Recently, SafT and Sharma [2] took the cue and
proved a theorem which further supplements the above statement of Walsh.

More precisely, let A p , p> 1, be the class of functions analytic in Izi < p
but not in Izi ~ p. For a given integer m ~ -1 and for (J> 1 and f E A p , let
Rn+ m,n(z, f) be a rational function of the form

which interpolates f in the (n +m + 1)th roots of unity. For v = 0, 1, 2, ...
let (cf, [2, (3.7)])

(1.2)

* This research is a part of the author's Ph.D. Thesis [5] submitted at the University of
Alberta.
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where
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( f, )
- Pn+m.n(Z, f, v)

r n + m n Z, ,V - ,. Zn _ an

(1.3)

For any integer I ~ 1, we set

I-I
L'J'!.n,m(z,f) := R n+ m,n(z, I) - L rn+ m,n(Z, f, v). (1.4)

V~O

Saff and Sharma [2] proved

THEOREM A. Let p > 1, a> 1, and an integer m ~ -1 be fixed. If f E A p

and if I is a given positive integer, then

I· Au ( f) = 0 {for Izi < p1+/,
1m LJI n m Z,

n~ 00 ,. Izi < a and Izi > a,

if a ~ pI +1,

if a < pI +1,
(1.5)

the convergence being uniform and geometric on compact subsets of these
regions. Moreover, the result is best possible in the sense that for each Z with
Izi = p1+ , and a ~ pI + I, there is an JE A p for which (1.5) does not hold.

Remark 1.1. rn+m,n(z,f, 0) is the rational function which, besides inter­
polating f in the n +m + 1 zeros of Pn,m(z), also minimizes the integral
LI~I If(z)-(p(z)j(zn_an)W Idzl over all polynomials p(z)E7tn+m'

Theorem A may be looked upon as a direct theorem in the Walsh
equiconvergence theory. In the present paper, we derive some quantitative
results for the sequence {L'J'!.n,m(z, I)};,"'~ I' To achieve our goal, we are
motivated by a recent paper of V. Totik [3] on complex interpolating
polynomials.

2. STATEMENT OF NEW RESULTS

Let R be a positive real number different from a. For a> p, set

FlR, a) := lim (max 1L'J'!.n,m(z, 1)1 )I/n
n~ 00 Izi = R

and

Then we have the following result:

(2.1 )

(2.2)
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THEOREM 2.1. Let 1 < p < cr and let R > 0 be a real number different
from cr. If f E A p then

(2.3 )

where KI(R, cr, p) and FI(R, cr) are given by (2.2) and (2.1), respectively.

Remark 2.1. For fixed p and cr, the value of the function KI(R, cr, p) can
be described as

crp-I-I, if R>cr

KI(R, cr, p) = R -1-1 if p~R<crp ,
p-I, if O<R<p.

(2.4)

The relation (2.3) does not hold when cr = p. For this consider the
following example:

EXAMPLE 2.1. Letf(z)=(z-p)-I. Then (cf. [2, (3.15)]),

ACT (z f) = (pn - cr
n

){ rln,m(z) Pn,m(P) - rln,m(P) Pn,m(z)} (rln,m(P ))1
I.n.m , (zn _ crn)(z _ p)(pn + m + 1_ 1) rln,m(P) Pn.m(P)

which is identically zero except at z = p if cr = p.

Also, for R = 0, Theorem 2.1 is no longer true. We shall justify this
statement in the next section (see Remark 3.2).

If w is any fixed primitive root of unity, then z = crw is a singular point of
the function Ain m(z, f) for infinitely many n's (see Example 2.1). Because
of this, we hav~ 'excluded he case R = cr in the relation (2.3).

It may be noted that KI(R, cr, p)::J:. KlR, cr, pi) if p::J:. p'. Thus as in [3,
Corollary 1] Theorem 2.1 gives

COROLLARY 2.1. Let cr and pi be fixed numbers with cr> pi > 1 and let
f(z) be an analytic function in Izi < p'. If for any fixed integer I ~ 1 and any
real number p, pi ~ P < cr, the relation (2.3) holds for some R > 0, then
lEAp.

Our next concern is to study the pointwise behaviour of Al.n.m(Z, f) in
the complex plane with some exceptions. If we set

Y I := {z: p < Izl, Izi =f: cr}

then we shall prove

and
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THEOREM 2.2. Let I~ 1, m ~ -1 be integers and (1 ~ pl. For each f e A p'

1< p < 00, we have

lim 1L1f.n,m(z,fW/n=K,(lzl, (1, p),
n~ 00

(2.5)

except at most at 1- [j/2] points in Yj U= 1, 2), where K,(lzl, (1, p) is given
by (2.4).

Remark 2.2. From the above theorem we note that if (1 > p'+ I, then the
sequence {L1f.n,m(z,f)}:= I' fe A p , cannot be bounded at more than I
points in the region Z = {z: (1 =1= Izi > p'+ I}. This gives an analogue of a
result of Saff and Varga [4] on the sharpness of some equiconvergence
results for interpolating polynomials.

The next result shows that in some sense Theorem 2.2 cannot be
improved.

THEOREM 2.3. Let p> 1, (1 ~ pl, and let integers I~ 1, m ~ -1 be fixed.
Given any set {zd of 1- [j/2] distinct points in the region Yj U= 1, 2),
there exist rational functions !j e A p U = 1, 2) for which

lim 1L1f.n,m(Zkl !j)II/n < K1( IZk I, (1, p)
n ~ 00

U=I,2)

for every k = 1, 2, ..., 1- [j/2].

Finally, we remark that Theorems 2.1-2.3 hold when m< -1.

3. REPRESENTATION OF L1f.n,m(Z' f)

The proofs of the above theorems will be based on a representation of
L1f.n,m(z, f) in terms of the Taylor coefficients of f which is given by (3.15)
in Lemma 3.2.

In order to establish (3.15), we recall hat (cf. [2, Corollary 3.2])

where

00

(zn_(1n) L1 f.n,m(z,f)= L Pn+m,n(z,f,v),
v=1

(3.1)

with
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Here r is a circle ItI=PI' 1 <PI <po From the definitions of Pn,m(t) and
iXn,m(t) in (1.3), we easily see that

n+m
Kn,m(t) = tn+m L bn,k(Z, rr)t-kzk,

k=O

where

{
1_rr-nzm + 1

b Z rr '= 'n,k(, ). 1 -n-n- rr z ,

O~k~n-l

n~k~n+m.
(3.5)

Using (3.2}--(3.5), we see after some elementary computation that

v-I .(V-l) . 00 (V+S)
Pn+m.n(Z,j,V)=.L (-1)1 . rr- n1 L S rr-nsSn+m(z,j,s),

1=0 } s=o
(3.6)

where

n+m
Sn+m(z,j, s) = L (aN(k)-n - rrnaN(k)) bn,k(Z, rr)zk (3.7)

k=O

with N(k) := v(n + m + 1) - j(m + 1) + ns + k. Setting

I v.k.n~ Iv,k,n(f) := vI' (-I)j (V -:-1) rr-nj f (v: S) rr-nsaN(kj, (3.8)
J=O J s=o

it follows from (3.5}--(3.7) that

n+m
Pn+m.n(z,j, v)= L (Iv.k_n.n-rrnIv,k,n)zk

k=O

n-I

-n" (I nI) k+m+1- a L. v.k-n.n - a v.k.n Z
k=O

m

_a-n L (Iv,k.n-anIv.k+n.n)zk. (3.9)
k=O
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LEMMA 3.1. Let l~ 1 and 1<PI <po Using the above notation the
following inequalities hold,

00

L Iv,k,n = a(l+ I)(n+m+ I)+k + O(a- npl(l+ I)n-k)
v=I+1

(0 ~k~n+m),

(3.10)

where the constants depend on a, P, PI' f, and m.

Proof (i) From the Cauchy integral formula and the definition of N(k)
we can rewrite (3.8) for v = I, and after some simplification we obtain

(3.11)

Since a> 1 and It I=PI > 1, we have

(1-a- n tm + I )I-1
(1- a-nt-n)l+ I

so that from (3.11) we obtain the first relation in (3.10).

(ii) Summing up the relation (3.8) over v from 1+ 1 to 00, we obtain
(cf. (3.11))

With an argument similar to the above one, we can easily derive the second
relation in (3.10) which completes the proof. I

LEMMA 3.2. Let P> PI> 1 and 1 be a positive integer. If a> P then
(cf. (3.9))

n+m
Pn+m,n(z, f, I) = L (al(n + m+ 1)- n+k - anal(n + m+ 1)+k)Zk

k~O

(
n+m (IZI)k)+0 Pi 1n L - ,
k~O PI

(3.12)
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Proof From Lemma 3.1, we get
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Since rrmr~ 00 larll!r = p- I, we have larl = O(Pi r), 1 < PI < p. If a> P, it
can be deduced easily from (3.11) that

(3.14)

Thus (3.12) follows from (3.9) and (3.13). I
Now we can represent A/',n,m(z, f) explicitly in terms of the Taylor coef­

ficients of f(z) as below.

LEMMA 3.3. Let m ~ -1 and I ~ I be fixed integers and let f E A p'

1 < P< aJ. If a> P, then for every € > 0 the following relation holds,

n+m
(zn - an) Lll,n,m(z, f) = L {al(n+m+ I)-n+k -anal(n+m+ Il+d zk

k=O

(3.15)

where PI = P - € and

Proof We can rewrite (3.1) as

00

(zn-an)Al,n,m(z,f)=Pn+m,n(z,f,/)+ L Pn+m,n(z,f,v). (3.17)
v=l+ I

If we sum up the relation (3.9) over v from 1+1 to 00, and then use the
second formula in (3.10), we obtain after some computation

which dominates O(Pi 'n Lk~O (lzl/pdk
) when a> p. Hence (3.15) follows

from (3.17), (3.12), and (3.18). I
Remark 3.1. We pointed out in Section 2 that, in general, Theorem 2.1

is not true for R = Izi =O. For this, notice that (3.15) and (3.16) give

- n ACT (0 f) - _ n + O{ n -(1+ I)n}a I,n+m' -al(n+m+ll-n a al(n+m+ll a PI . (3.19)
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It may happen for some f E A p that a'(n+m+ I)-n = a'(n+m+ I) = 0, for all n,
in which case F,(O, u)::;:; p-(l+ I).

The proof of Theorem 2.2 essentially depends on the representation
(3.21) for the function Hn(z) given by

(3.20)

LEMMA 3.4. Let l~ 1,1 <PI <P, and U~p2. If fEAp then

'-I

(zn - un) Hn(z) = _un+I L a'(n+m + 1)+ kZk
k~O

,
+ un+I L a(l+ I)(n+m+ 1)+k Zk + Gn+I(Pl> u, z),

k~O

where Gn(PI' u, z) is given by (3.16).

(3.21 )

Proof From (3.15), after using the fact a'(n+m+ I)-n+k =
O(Pi(l-I)n-k), 0::;:; k::;:; n +m, we can write

n+m {n+m (IZI)k}n n u _ n k - (1- I)n
(z -u )L1"n,m(z,f)- -u L a'(n+m+I)+kz +0 PI L-

k~O k=O PI

+ 0 {unpi(l+ I)n ni
m
(~)k}.

k=O PI

Since u ~ p2
, it follows that

n+m
(zn_un) L1l,n,m(z, f) = _un L a'(n+m+I)+kZk

k=O

(3.22)

Similarly,

n+m+1
(zn+l_ un+I)L1u (z f)= _un+1 "

/.n+l.m , l...J
k=O

{
n+m+l (IZI)k}+ 0 unpi(l+l)n L - .

k=O PI
(3.23 )
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If we multiply (3.22) and (3.23) by a and Zl, respectively, and subtract
the resulting equations, then after simple calculations we obtain (cf. (3.20))

n+m
(zn - an) Hn(z) = -a"+ 1 L al(n +m+ l)+kzk

k=O
n+m+l+ I

+an+1 L al(n+m+I)+kZk+Gn+I(PI,a,z), (3.24)
k=1

where Gn(PI, a, z) is given by (3.16). From (3.24), we easily derive
(3.21). I

4. PROOF OF THEOREM 2.1

Since a> P, L1'f.n,m(z,f) can be estimated from (3.15) to yield

1L1" (z,f)1 ~ Canpi
ln
n~m (~)k + Gn(PI, a, Izl),

I.n,m Izn-anl k'::O PI Iz"-anl

where C is a positive constant independent of n. If we let Izi = R, then using
(3.16), we obtain

C(1n p -In n+m (R)k
1L1 'f.n,m(z, /)1 ~ jRn_ I nl L -

(1 k=O PI

if R?3 P,

if O<R<p.

A straightforward analysis now gives us

I
anpi(/+ I)n,

max 1L1l'" m(z,f)j ~ C Rnpi(l+ I)n,
Izl =R ,.

Pi/n,

if R > a,

if P~ R < a,

if O<R<p.

Since E> 0 is arbitrary in PI = P - E, we obtain (cf. (2.1))

I
ap-(l+l), R>a,

F,(R, a) ~ R~,-(l+ I), P~ R < a,

P , O<R<p,

that is,

640/55/2-7

R>O, R=!'a. (4.1 )



214 M. A. BOKHARI

In order to prove the reverse inequality, we shall consider two cases
(1) R~p and (2) O<R<p. Let s>O be so small that

(4.2)

Case 1 (R ~ p). Given integers I~ 1 and m ~ -1, we set for any
integer q

n= [I: IJ-m.
Then q can be expressed as q=l(n+m+l)+k 1, n+m-l~kl~n+m.

This shows that aq "# 0 for some k 1 and for infinitely many n. If we divide
both sides of (3.15) by Zkl + 1 and then integrate over Izi = R, we see on
using (3.16) and Cauchy's theorem, that

_1 ( (zn _an) ~/,n.m(z,f) dz
2ni J1z1 = R Zkl + 1

= a'(n+m+ l)-n+kl -ana'(n+m+l)+kl + 0 (;:1 (p~2r). (4.3)

Since Izn - ani ~ Rn+ an, for Izi = R, it follows from Definition (2.1) that

I
r (zn- an)L1/'n,m(z,f) dzl
J\Z! ~ R Zkl + l(Rn+ an)

~ k~ + 1 f {max 1L1/'n,m(z, I)I} Idzl
R Izi = R Izi ~ R

~ CR-k'(F,(R, 0') + sy.

Notice that ktln -+ 1 and thus q/n -+ 1+ 1, as n -+ 00. On dividing both sides
of (4.3) by (Rn + an) and taking the nth roots, we get

Since

if R > 0',

if R < 0',
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l
~p-(l+I)

1 R'R(F,(R, a) + 6) ~
p-(l+ I),

In other words,

if R > a

if R < a.

(4.4)R~p.F,(R, a) ~ p-' min {~'~} = K,(R, a, p),

Case 2 (0 < R < p ). When 0 < R < p, we set for any integer q
n = [q/I] - m - 1, i.e., q = I(n +m+ 1) + kz, 0 ~ kz~1- 1. Here we observe
that kz/n -+ 0 and q/n -+ I, as n -+ 00. On following the method used above
after (4.3) and taking into account the estimate of Gn(P, a, z) when
Izi = R < p, we conclude that

Thus we have

(4.5)

From (4.1), (4.4), and (4.5) we obtain the relation (2.3). I

5. PROOF OF THEOREM 2.2

First we remark that if for some Zo limn _ 00 ILlf,n,m(zO' !)!I/n <
K,( Iz0 I, a, p) then it follows from (3.20) that

lim IHn(zoW/n<K,(lzol,a, p).
n- 00

(5.1 )

We shall show that there cannot be more than 1 (or 1- 1) points in Y1

(or Y z) for which (2.5) fails. The proof follows the line of proof of V. Totik
[3] (cf. SafT and Varga [4]) and is by contradiction.

Case 1 (izi >p, Izi :Fa). Using (3.16), we can rewrite (3.21) as

I

( n n)H () n+l" k+n+m+l+o« -/)n)Z - a n Z = a L. a(l+ I)(n+m+ 1)+kZ aPI
k=O
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Next choose e> 0 satisfying (4.2). Then there exists rt > 0 such that
(Tn+1 ,

H ( )- '\' k+n+m+1n Z --n--n 1... 0U+I)(n+m+ll+k Z
Z -(T k~O

Assume that

lim 1L1f.n,m(zj,f)llln < K,(lzjl, (T, p),
n~ 00

if Izi < (T,

if P< Izi < (T.

l~j~/+1,

(5.2)

where {Zj}J:;: fare 1+ 1 distinct points in the region YI •

Without any loss of generality, we may assume that Izjl > (T for
j= 1, ..., A and Izjl <(T for j=A+ 1, ..., 1+ 1. Then, from (5.2), we have

=-- lin {(Tp-U+Il, if 1~j~A,
}~~ IHn(Zj)\ < Iz)p-U+1), if A+1~j~/+1.

This together with (5.2) shows that there are numbers rt I > 0 and C ~ 1
such that for all n ~ 1

where

if 1~j~ A,
if A+ 1~j~/+ 1,

(5.3)

j = 1, 2, ..., 1+ 1. (5.4)

The coefficient matrix in the above system of (l + 1) equations is a
Vandermondian which is nonsingular since all the z/s are distinct. Solving
the system (5.4) for °An + k, where An := (l + 1)(n + m + 1), we obtain

'+ I zn _ (Tn
0A k = '\' c· k J n .n+ L. J. n n + m + 1 Jl). n'

j = I (T Zj

k =0,1, ..., I,

where Cj,k are constants independent of n. Thus from (5.3) we have

TIm IOAn+kll/[An+k] ~max(~I' ~2)'
n~ 00

where
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rIm la 11/[(l+I)(n+m+I)+k]<1/p
(/+ I)(n + m+ I)+k

n~ 00

217

independently of 0 ~ k ~ l. This contradicts the fact that ITmn~ 00 Ian II/n =
p - I. Hence the relation (2.6) holds in the region Y1 for all but at most l
points.

Case 2 (izi < p). On using (3.16), we can rewrite (3.21) for Izi < p as
follows:

I-I

(zn_an)H (z)= _an+ 1 " a zk+O(ap-(/+I))n)n L. I(n+m+ l)+k I
k=O

+ O((lzl Pi(/+ nn·

Choosing PI < P so close to P that p~+ I > pi, we get

where ~ is a sufficiently small positive number. If we assume that

ITm 1L1/'n.m(Zj' f)11/n < p -I,
n~ 00

1~j~ l,

where {Zj Hare l distinct points in the region Y 2 , we arrive at a contradic­
tion on following the procedure used for Case 1.

This completes the proof of Theorem 2.2. I

6. PROOF OF THEOREM 2.3

(i) We shall first prove the theorem when the set {Zj} lies in Y I . Let
z I> ... , ZI be l distinct points with a -:I- IZj I> p, 1~ j ~ l. Then the system of
l + 1 equations

I

L J1.k Zj=O,
k=O

1~j~ l, (6.1 )

with J1.1 = 1 has a unique solution J1.o, ..., J1.1- I' Set

(6.2)
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Then II is a rational function with 1+1 poles on /zi = p which implies that
II E A p • Notice that

(6.3 )

If we write II(z) := r..r)=o ajz j, then from (6.2) and (6.3), we find that

Thus, from (6.1), we have

o~ k ~ I, q = 0, 1,2, ....

1~ j ~ I, q = 0, 1, 2, .... (6.4 )

For any integer n, we can determine integers rand s so that In + s = U+ 1)
(r-m-1), where O~s~/. More precisely, r= -[ -In/U+ 1)] +m+ 1 (or
r = [In/U + 1)] + m + 2, unless s:: 0 (mod 1+ 1)), where [x] denotes the
integral part of x. That is, l(n+m+l)+s+m+l=U+l)r, O~s~/.

Consider the decomposition

n+m s+m

L al(n+m+I)+kZJ= L al(n+m+l)+kZJ
k=O k=O

n+m I
+ " z(/+ I)q-/(n+m+ I) " a ZkL. j L. (/+ I)q+k j'

q=r k=O

in which the second term on the right side vanishes by (6.3). Therefore,

1~j~ I. (6.5)

(6.6)

Since u ~ p2, from (3.22) and (6.5) we have

(zi - un) LJ'!.n,m(Zj,fd = O(unp -In) + O((u Izjl Pj(/+ 2)n,

where PI := P - € satisfies (4.2), i.e.,

<1 _ (unp - In (UIZjIPj(/+2)Y)
LJ"n,m(zj,/d- O /Zi-un/+ IZi-unl .

Notice that p-I=pp-(/+I)< Izj/p-(/+I), and pj(/+2)<p-(/+I) by (4.2).
With this observation, we obtain from (6.6)
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where <5 =max {p/IZjl, pl+ I/p~+ 2} < 1. Hence, for every j = 1, 2, ..., I, we get

This proves Theorem 2.3 for the region Y I .

(ii) If Z I> ... , Z1_ I are 1- 1 distinct points with Z1_ I ;i:°in the regioii. YL'

we solve the system of I equations

I-I
L Jik Z; = 0,
k~O

l~j~l-l,

with Jil-I = 1. Set 12(Z) := (L~~~JikZk)/(l- (z/p )1). Then, on repeating the
above argument with suitable changes, we conclude that

-I' I Au ( f )\I/n -I1m LJ I.n,m Zj' 2 < P ,
n- co

This completes the proof. I
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